Symplectic Lefschetz fibrations on S 1 × M 3

نویسندگان

  • Weimin Chen
  • Rostislav Matveyev
چکیده

In this paper we classify symplectic Lefschetz fibrations (with empty base locus) on a four-manifold which is the product of a three-manifold with a circle. This result provides further evidence in support of the following conjecture regarding symplectic structures on such a four-manifold: if the product of a three-manifold with a circle admits a symplectic structure, then the three-manifold must fiber over a circle, and up to a self-diffeomorphism of the four-manifold, the symplectic structure is deformation equivalent to the canonical symplectic structure determined by the fibration of the three-manifold over the circle. AMS Classification numbers Primary: 57M50 Secondary: 57R17, 57R57

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realizing 4-manifolds as Achiral Lefschetz Fibrations

We show that any 4-manifold, after surgery on a curve, admits an achiral Lefschetz fibration. In particular, if X is a simply connected 4-manifold we show that X#S × S and X#S×̃S both admit achiral Lefschetz fibrations. We also show these surgered manifolds admit near-symplectic structures and prove more generally that achiral Lefschetz fibrations with sections have near-symplectic structures. A...

متن کامل

Symplectic Lefschetz fibrations and the geography of symplectic 4-manifolds

This paper is a survey of results which have brought techniques from the theory of complex surfaces to bear on symplectic 4-manifolds. Lefschetz fibrations are defined and some basic examples from complex surfaces discussed. Two results on the relationship between admitting a symplectic structure and admitting a Lefschetz fibration are explained. We also review the question of geography: which ...

متن کامل

On hyperelliptic C∞-Lefschetz fibrations of four-manifolds

We show that hyperelliptic symplectic Lefschetz fibrations are symplectically birational to two-fold covers of rational ruled surfaces, branched in a symplectically embedded surface. This reduces the classification of genus 2 fibrations to the classification of certain symplectic submanifolds in rational ruled surfaces.

متن کامل

Symplectic Lefschetz Fibrations on S ×m

A remarkable theorem of Donaldson [D] says that a symplectic 4manifold admits a Lefschetz pencil by symplectic surfaces. Given a Lefschetz pencil on a 4-manifold X, one can blow up points at the base locus to get a Lefschetz fibration of X over S, which admits a nice handlebody decomposition and can be described by geometric monodromy representation into the mapping class group of a regular fib...

متن کامل

Lefschetz Fibrations and 3-fold Branched Covering Spaces, Ii

Let M be a smooth 4-manifold which admits a relatively minimal genus h Lefschetz fibration over S, and assume that the collection of vanishing cycles for this fibration includes σ separating curves. For h ≥ 3, we show that M is the relative minimalization of a genus h Lefschetz fibration obtained as an irregular simple 3-fold branched cover of the rational surface CP #(2σ + 1)CP , branched over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000